Ford Motor Triple Exponential Smoothing

Ford Motor Company -- USA Stock  

USD 12.19  0.09  0.74%

Investors can use this prediction interface to forecast Ford Motor historic prices and determine the direction of Ford Motor Company future trends based on various well-known forecasting models. However looking at historical price movement exclusively is usually misleading. Macroaxis recommends to always use this module together with analysis of Ford Motor historical fundamentals such as revenue growth or operating cash flow patterns. Although naive historical forecasting may sometimes provide an important future outlook for the firm we recommend to always cross-verify it against solid analysis of Ford Motor Company systematic risks associated with finding meaningful patterns of Ford Motor fundamentals over time. Additionally see Historical Fundamental Analysis of Ford Motor to cross-verify your projections.
Symbol
Refresh
Investment Horizon     30 Days    Login   to change
Triple exponential smoothing for Ford Motor - also known as the Winters method - is a refinement of the popular double exponential smoothing model with the addition of periodicity (seasonality) component. Simple exponential smoothing technique works best with data where there are no trend or seasonality components to the data. When Ford Motor prices exhibit either an increasing or decreasing trend over time, simple exponential smoothing forecasts tend to lag behind observations. Double exponential smoothing is designed to address this type of data series by taking into account any trend in Ford Motor price movement. However, neither of these exponential smoothing models address any seasonality of Ford Motor.
Given 30 days horizon, the value of Ford Motor Company on the next trading day is expected to be 12.2

Ford Motor Prediction Pattern

Backtest Ford Motor | Ford Motor Price Prediction | Buy or Sell Advice 

Ford Motor Forecasted Value

October 21, 2017
12.19
Market Value
Downside upside
12.2
Next Trading Day Expected Value
Target Price Odds
 Above  Below  
14.79
Upside
Upside upside

Model Predictive Factors

AICAkaike Information CriteriaHuge
BiasArithmetic mean of the errors -0.0038
MADMean absolute deviation0.0925
MAPEMean absolute percentage error0.0076
SAESum of the absolute errors1.48
As with simple exponential smoothing, in triple exponential smoothing models past Ford Motor observations are given exponentially smaller weights as the observations get older. In other words, recent observations are given relatively more weight in forecasting than the older Ford Motor Company observations.