CAC ALL Simple Regression

PAX -- France Index  

 6,785  20.87  0.31%

Investors can use this prediction interface to forecast CAC ALL historic prices and determine the direction of CAC ALL SHARES future trends based on various well-known forecasting models. However looking at historical price movement exclusively is usually misleading. Macroaxis recommends to always use this module together with analysis of CAC ALL historical fundamentals such as revenue growth or operating cash flow patterns. Additionally take a look at fundamental analysis of CAC ALL to check your projections.
Horizon     30 Days    Login   to change
Simple Regression model is a single variable regression model that attempts to put a straight line through CAC ALL price points. This line is defined by its gradient or slope, and the point at which it intercepts the x-axis. Mathematically, assuming the independent variable is X and the dependent variable is Y, then this line can be represented as: Y = intercept + slope * X.
Given 30 days horizon, the value of CAC ALL SHARES on the next trading day is expected to be 6642.234012

CAC ALL SHARES Prediction Pattern

CAC ALL Forecasted Value

October 14, 2019
Market Value
Expected Value

Model Predictive Factors

AICAkaike Information Criteria74.1913
BiasArithmetic mean of the errors None
MADMean absolute deviation86.0138
MAPEMean absolute percentage error0.0129
SAESum of the absolute errors2752.4408
In general, regression methods applied to historical equity returns or prices series is an area of active research. In recent decades, new methods have been developed for robust regression of price series such as CAC ALL SHARES historical returns. These new methods are regression involving correlated responses such as growth curves and different regression methods accommodating various types of missing data.

Volatility Measures

CAC ALL Risk Indicators